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Abstract

Background: Current surgical therapies for pelvic organ prolapse (POP) do not repair weak vaginal tissue and just
provide support; these therapies may trigger severe complications. Stem cell-based regenerative therapy, due to its
ability to reconstruct damaged tissue, may be a promising therapeutic strategy for POP. The objective of this study
is to evaluate whether mesenchymal stem cell (MSC) therapy can repair weak vaginal tissue in an ovariectomized
rhesus macaque model.

Methods: A bilateral ovariectomy model was established in rhesus macaques to induce menopause-related vaginal
injury. Ten bilaterally ovariectomized rhesus macaques were divided into two groups (n=5/group): the saline group
and the MSC group. Three months after ovariectomy, saline or MSCs were injected in situ into the injured vaginal
wall. The vaginal tissue was harvested 12 weeks after injection for histological and biochemical analyses to evaluate
changes of extracellular matrix, microvascular density, and smooth muscle in the vaginal tissue. Biomechanical
properties of the vaginal tissue were assessed by uniaxial tensile testing. Data analysis was performed with unpaired
Student’s t test or Mann-Whitney.

Results: Twelve weeks after MSC transplantation, histological and biochemical analyses revealed that the content of
collagen |, elastin, and microvascular density in the lamina propria of the vagina increased significantly in the MSC
group compared with the saline group. And the fraction of smooth muscle in the muscularis of vagina increased
significantly in the MSC group. In addition, MSC transplantation improved the biomechanical properties of the
vagina by enhancing the elastic modulus.

Conclusion: Vaginal MSC transplantation could repair the weak vaginal tissue by promoting extracellular matrix
ingrowth, neovascularization, and smooth muscle formation and improve the biomechanical properties of the
vagina, providing a new prospective treatment for POP.
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Background

Pelvic organ prolapse (POP) is defined as the descent of
the anterior or posterior vaginal wall, the uterus, or the
apex of the vagina after hysterectomy [1]. Although POP
is a nonfatal disease, it seriously affects a woman’s qual-
ity of life by its local physical symptoms of urinary in-
continence, voiding difficulty, anal incontinence, and
sexual dysfunction. The prevalence of POP is 9.6—-30.8%
in women, particularly in postmenopausal women [2, 3].
The lifetime risk of undergoing surgery for POP is 11—
19% [4, 5], which places a major economic burden on
patients and the healthcare system [6]. Surgical strategies
for POP repair mainly include native tissue repair and
mesh-augmented repair strategies. Native tissue repair
has high objective failure rates, and although mesh re-
pair has a reduced failure rate, postoperative complica-
tions such as infection, chronic pain, and vaginal erosion
have caused international controversies, limiting its use
[7, 8]. FDA warnings regarding these adverse complica-
tions have led to the ban of several transvaginal meshes
in many countries. Therefore, the development of a
novel therapeutic strategy for POP with a high cure rate
and few complications is needed.

The exact pathophysiology of POP has not been well
characterized. Vaginal delivery, menopause, and con-
nective tissue abnormalities predispose some women to
disruption, stretching, and dysfunction of the vagina,
resulting in POP [9-12]. Previous studies have shown
collagen disequilibrium and a reduced amount of
smooth muscle in the vaginal tissue of POP patients
[13-15]. However, current clinical therapies for POP do
not treat these pathophysiological causes and focus only
on the recovery of anatomical positioning. Therefore, re-
pair and restoration of the vaginal tissue composition
should be seriously considered in the development of
novel treatments for POP.

Stem cell therapies have been used in many medical
areas to replace, repair, or enhance the biological func-
tion of damaged tissue or organs, such as in skin regen-
eration, trachea reconstruction, joint replacement, and
bladder repair [16]. Among the different existing stem
cell populations, mesenchymal stem cells (MSCs) have
gathered attention and emerged as attractive candidates
for various therapeutic applications due to their charac-
teristics, including their multilineage differentiation po-
tential and ability to exert paracrine effects. Several
scientific studies have been performed on stem cell-
based therapies for POP [17-19]. However, almost all of

these studies involved the use of a mesh seeded with
stem cells, in which the effect of stem cells could not be
directly evaluated due to the effect of the mesh on the
host tissue. Additionally, the use of mesh greatly in-
creases the cost of POP treatment. In the pelvic floor
dysfunction field, there have been many scientific and
clinical studies on the treatment of stress urinary incon-
tinence (SUI) by the periurethral injection of stem cells.
Inspired by the periurethral injection of stem cells for
SUI, we directly injected MSCs into the vaginal wall in
this study.

Rhesus macaques are considered the best animal for
modeling and studying POP, given their similarity to
humans in terms of pelvic floor anatomy and histological
structure. In addition, rhesus macaques are intermit-
tently bipedal and give birth to infants with a relatively
large head diameter, which may contribute to the devel-
opment of POP. Since menopause and pregnancy are
considered major risk factors for POP [9], we selected
multiparous rhesus macaques and performed bilateral
ovariectomy 3 months before the MSC injection to in-
duce a menopausal status.

In this study, we used rhesus macaques to establish
the animal model and directly injected MSCs into the
vaginal wall. The aim of this study was to evaluate the
impact of MSCs on vaginal repair in a bilaterally ovariec-
tomized rhesus macaque model. MSC transplantation ef-
fectively repaired and normalized the fibromuscular
structures of the vagina, indicating the potential of this
approach as a treatment for POP.

Methods

Isolation and culture of MSCs

The human umbilical cord was obtained from a healthy
and full-term birth with informed consent from the
donor, and the procedures were approved by the Ethics
Committee of Peking Union Medical College Hospital
(JS-2043). MSCs were isolated according to a previously
described method [20]. Briefly, the cord was rinsed with
ice-cold phosphate-buffered saline to remove blood
clots. Wharton’s jelly around the cord vessels was iso-
lated and dissected into 1- to 2-mm pieces. After partial
digestion of the tissue pieces in trypsin solution, the
pieces were placed on tissue culture dishes in MSC
medium (Viraltherapy Technologies, Wuhan, China) and
incubated at 37 °C in 5% CO,. The cells (passage 0) grew
out from the adherent explants over approximately 7 to
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10 days of culture. MSCs from passages 3—6 were used
in the following experiments.

Animals and surgical procedures

Ten female multiparous rhesus macaques, aged 10 years,
were provided by the Beijing Xieerxin Institute of Bio-
logical Resources. Experimental protocols were approved
by the Ethics Committee of Beijing Xieerxin Institute of
Biological Resources (E20190401). All animals were kept
in single cages according to the current national animal
welfare standards. Routine laboratory tests and regular
examinations by veterinarians during a quarantine
period were used to certify that these experimental ani-
mals were pathogen-free and in good physical condition.
Animals received water ad libitum and scheduled chow
supplemented with fresh fruit, vegetables, and multiple
vitamins daily. Animals were raised under standard la-
boratory conditions (temperature, 20—22°C; relative hu-
midity, 50—70%; 12 h/12 h light/dark cycle).

All rhesus macaques underwent bilateral ovariectomy
to induce a menopausal status. Compound ketamine was
used for intramuscular anesthesia at a dosage of 1-2
mg/kg. Then, a ventral midline incision in the upper ab-
domen was made under sterile conditions, and the ovar-
ies were well exposed and excised. All animals were
administered penicillin to prevent infection after the
operation.

Ten bilaterally ovariectomized rhesus macaques were
divided into two groups (n=5/group): the saline group
and the MSC group. Three months after ovariectomy,
(1) animals in the control group received vaginal sube-
pithelial injections of 1.8 mL saline, (2) while animals in
the MSC group received injections of 1x10® MSCs (in
1.8 mL of saline) at the same sites. The vaginal length of
the rhesus macaques was approximately 5 cm. Injections
were performed at six points of the vaginal wall: two
points on the anterior vaginal wall, two points on the
posterior vaginal wall, one point on the left vaginal wall,
and one point on the right vaginal wall. Specifically, a
straight clamp was used to dilate and expose the vaginal
wall. The two injection points on the anterior vaginal
wall were 1.5 cm and 3.5 ¢cm above the vaginal introitus
on the midline of the anterior vaginal wall. Similarly, the
two points on the posterior vaginal wall were 1.5 cm and
3.5 ¢cm above the introitus on the midline of the poster-
ior vaginal wall. The injection points on the left and
right vaginal wall were located 2.5 cm above the vaginal
introitus. At 12 weeks after injection, the rhesus ma-
caques were sacrificed, and the vagina was harvested for
the evaluation of histomorphology and biomechanical
properties.

After anesthesia was induced, we opened the abdom-
inal cavity to free the vagina to the vaginal orifice and
disarticulated the pubic symphysis to isolate the vaginal
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orifice from the surrounding perineal skin. Then, the va-
ginal tube was harvested intact. After isolating the va-
gina, the animal was euthanized. The collected vagina
was divided into the anterior and posterior vaginal walls.
The posterior vaginal wall was cut transversely into
proximal and distal segments. The proximal segment
was immediately immersed in 10% neutral-buffered for-
malin for histological evaluation. The distal segment was
stored in liquid nitrogen for the molecular study. The
anterior vaginal wall was wrapped in saline gauze moist-
ened with 0.9% normal saline and placed in a refriger-
ated box (built-in ice box in which the temperature can
be maintained at 0-4°C).

Masson trichrome staining, sirius red staining, and
Verhoeff-van Gieson staining

The vaginal tissue was fixed in 10% formalin for 24 h,
embedded in paraffin, and cut into 5-pum-thick sections.
The vaginal tissue sections were stained following the
standard procedures for Masson trichrome staining, sir-
ius red staining, and Verhoeff-van Gieson staining. For
image analysis, the slides were viewed under a Nikon
Eclipse CI microscope, and images of five randomly se-
lected fields per slide were captured with a Nikon DS-
U3 camera. Image-Pro Plus computer software was used
to calculate the percentage of collagen I and collagen III
(sirius red stain, x200 magnification). The percentage of
elastin in the lamina propria was analyzed using Na-
tional Institutes of Health Image] software (Verhoeff-van
Gieson stain, x400 magnification).

Immunohistochemistry

Immunohistochemistry was performed as previously de-
scribed using anti-a-smooth muscle actin (a-SMA) anti-
body (ab5694, Abcam) to identify smooth muscle in the
vaginal tissue [21]. Five images per slide of the muscu-
laris region (x200 magnification) were captured under a
Nikon Eclipse CI microscope with a Nikon DS-U3 cam-
era. Vascular smooth muscle was excluded manually
from each image, and the fraction of smooth muscle was
determined by computing the area of a-actin staining
relative to the total area of nonvascular muscularis using
National Institutes of Health Image] software.

Immunofluorescence

von Willebrand factor (vVWF), a glycoprotein produced
by endothelial cells, is routinely used to identify vessels
in tissue sections. Immunofluorescence staining was per-
formed with a mouse monoclonal primary antibody
against VWF (ab201336, Abcam). Five images per slide
(x200 magnification) of the lamina propria region were
captured under a Nikon Eclipse CI microscope with a
Nikon DS-U3 camera. The results are expressed as the
mean number of microvessels per high-power field.
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RT-qPCR

Quantitative real-time polymerase chain reaction (RT-
qPCR) was used to determine the relative levels of
mRNA in vaginal tissues. Total RNA was extracted using
TRIzol reagent (Invitrogen, USA) and reverse tran-
scribed using HiScript II Q RT SuperMix for qPCR
(R223-01, Vazyme, China) according to the manufac-
turer’s instructions. RT-qPCR was performed using an
Applied Biosystems QuantStudio system with ChamQ
SYBR Green qPCR Master Mix (Q331-02, Vazyme,
China). The Delta-Delta-Ct (ddCt) method was used to
determine relative gene expression. The relative expres-
sion of mRNA was normalized to that of the housekeep-
ing gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH).

Biomechanical testing

Uniaxial tensile biomechanical testing was performed
within 24h after obtaining the specimen. The load (New-
tons) and elongation (millimeters) were recorded to gen-
erate a load-elongation curve. Three parameters
describing the biomechanical properties of the vaginal
wall were obtained: ultimate load (N), ultimate strain,
and elastic modulus (MPa). Ultimate load defines the
point of tissue disruption on the load-elongation curve.
Strain is the percent change in the length of the mater-
ial. Ultimate strain is maximal elongation divided by the
original length. Stress is the measured load divided by
the cross-sectional area. Elastic modulus is the ratio of
stress to the corresponding strain in the linear region of
stress-strain curve. It is the measure of stiffness of a ma-
terial. In terms of the stress-strain curve, elastic modulus
is the slope of the stress-strain curve in the range of lin-
ear proportionality of stress to strain.

Statistics

Kolmogorov—Smirnov test was used to analyze whether
the data were normally distributed. Following confirm-
ation of normal distribution, unpaired Student’s t test or
Mann-Whitney was carried out for checking differences
between both groups. The data are presented as mean *
standard deviation (SD). P values <0.05 was considered
statistically significant. All statistical analyses were per-
formed using SPSS version 26.0 (IBM Corp, Armonk,
NY).

Results

Isolation and characterization of MSCs

A schematic of the MSC isolation and characterization
protocol is shown in Supplementary Figure 1. Flow cyto-
metric analysis showed positive expression of CD90,
CD105, CD73, CD29, and CD44 and low expression of
CD34 and CD45, indicating that the cells isolated from
human umbilical cord had MSC characteristics.
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Demographics of rhesus macaques
Demographic data from each group are illustrated in
Table 1. All animals have similar age, parity, and BMIL

Effect of MSCs on vaginal histomorphology

MSCs were injected into vaginal subepithelial sites of
the ovariectomized rhesus macaque and the effects were
evaluated 12 weeks after transplantation (Fig. 1A). The
six specific vaginal wall injection sites in the rhesus ma-
caques are shown in Fig. 1B. All animals had a normal
recovery after the injections.

To examine the morphology of the vaginal wall, Mas-
son trichrome staining was applied (Fig. 2A). Similar to
humans, the vaginal wall of rhesus macaques comprises
the following layers: the epithelium (stained pink), lam-
ina propria (stained blue), muscularis (stained pink), and
adventitia (stained blue). There was no significant differ-
ence in the thickness of the lamina propria between the
saline group and the MSC group (Fig. 2B). However,
there was a significant increase in the thickness of the
muscularis layer of the vagina in the MSC group com-
pared with the saline injection group (Fig. 2C).

Changes in the collagen composition in the vagina

Sirius red birefringence was used to assess the collagen
in the lamina propria layer of the rhesus macaque vagina
(Fig. 2D). The slides were viewed under a light micro-
scope equipped with a polarizing filter to identify the bi-
refringent sirius red-stained collagen fibers. Under
polarized microscopy, the collagen fibers showed a
mixed proportion of birefringent staining patterns ran-
ging from green to orange/red; orange/red indicated col-
lagen I, while green indicated collagen III. At 12 weeks
postinjection, quantitative analysis showed that the per-
cent area of collagen I in the lamina propria was signifi-
cantly increased and that the percent area of collagen III
was significantly decreased (Fig. 2E) in the MSC group.
Accordingly, the MSC group showed a significantly
higher collagen I/III ratio (Fig. 2F) than the saline group
12 weeks after injection.

Increased elastic fiber content in the vagina

Verhoeff-van Gieson staining was used to assess the per-
cent area of elastic fibers in the lamina propria of the va-
ginal segment (Fig. 2G). In the stained sections, elastin

Table 1 Demographics of rhesus macaques in the study

Groups Age (years) Parity CRL (cm) Weight (kg) BMI (kg/m?)
Saline 10.4£0.6 4(3,4) 584+44 8713 25.5+09
MSC 10204 4(3,4) 580+68 89+15 26.7+4.1
Pvalue 0.545 0820 0915 0.838 0532

Age, CRL, weight, and BMI are expressed as the mean * standard deviation.
Parity is expressed as median (interquartile range). BMI, body mass index; CRL,
crown-rump length
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appeared black, collagen appeared red, and smooth
muscle appeared yellow. In the MSC group, elastin
accounted for 12.13% of the lamina propria, which was
significantly higher than the corresponding value of
10.19% in the saline group (Fig. 2H).

Increased smooth muscle content in the vagina
Immunohistochemistry was used to assess the morph-
ology and quantity of the nonvascular smooth muscle in
the muscularis layer of the rhesus macaque vaginal wall
(Fig. 3A). Compared with those in the MSC group, the
smooth muscle bundles in the saline group appeared to
be disorganized and smaller. In addition, the fraction of
smooth muscle in the nonvascular muscularis layer was
36.26% in the MSC group, which was significantly higher
than the 25.95% in the saline group (Fig. 3B).

Increased microvascular density in the vagina
Immunofluorescence was used to determine the micro-
vascular density in the lamina propria of vaginal tissue
by staining with von Willebrand factor (vWF) (Fig. 3C).
We examined the vessels under a light microscope and
counted the number of vessels per high-power field
(x200 magnification). Significantly more vWE-positive
vessel profiles were observed in the MSC group than in
the saline group (Fig. 3D).

Effect of MSCs on gene expression

RT-qPCR was used to analyze the expression of smooth
muscle (ACTA?2), extracellular matrix (ECM)-associated
genes (collagen I a I (COLIAI), collagen III o 1
(COL3A1I), elastin (ELN), fibulin-5 (FBNS5)), and genes
involved in ECM remodeling (matrix metalloproteinases
(MMPs), tissue inhibitor of metalloproteinases (TIMPs))
12 weeks after injection. At the mRNA level, the MSC
group showed significantly upregulated smooth muscle,
collagen I, fibulin-5 expression, and downregulated
MMP2, MMP9, and MMP13 expression (Fig. 4A, B). In
addition, we quantified the mRNA levels of vascular
endothelial growth factor (VEGF), transforming growth
factor Bl (TGF-fI), tumor necrosis factor a (TNF-a),
and platelet-derived growth factor (PDGF). At the
mRNA level, the MSC group significantly upregulated
VEGF expression (Fig. 4C). The primer sequences used
for RT-qPCR are described in Supplementary Table 1.

Effect of MSCs on the biomechanical properties of the
vaginal tissue

The biomechanical properties of the vaginal tissue were
assessed using uniaxial biomechanical testing. The gen-
erated load-elongation curves were nonlinear with the
characteristic toe, linear, and failure regions. Figure 5B
shows the stress-strain curves of vaginal tissue in the
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“elastic phase.” There was no significant difference in
the ultimate load or ultimate strain at failure between
the MSC group and the saline group at 12 weeks after
injection (Fig. 5D, E). The elastic modulus in the MSC
group was significantly higher than that in the saline
group (Fig. 5C, 4.12+1.04 versus 2.71+0.34 MPa), indi-
cating that the vaginal tissue injected with MSCs was
stiffer than that not injected with MSCs.

Discussion
At present, surgical treatments for POP do not repair
weak vaginal tissue and just provide support, and these

treatments may be accompanied by severe complications.
Stem cell-based regenerative therapy, due to its ability to
repair and restore damaged tissue, may have potential as a
treatment strategy for POP. In this study, we demon-
strated that the injection of MSCs could repair the vaginal
tissue of rhesus macaques after bilateral ovariectomy
through remodeling of the ECM and the formation of
smooth muscle and microvessels, suggesting the potential
of MSCs to facilitate the reconstruction of weak vaginal
tissue as a new prospective treatment for POP.

Structural defects in vaginal tissue are believed to be
closely related to the occurrence and development of



Zhang et al. Stem Cell Research & Therapy (2021) 12:406

Page 7 of 11

A B
x 50+
[
o *
© 404
f
S
g S 304
%) ®
o] & 20
3
€
=
£ 10
o
£
(2B = T
Saline MSC
C D
“ 100
< sk %k
[ =
= 80+
2
L;L g 60—
> < 404
8]
(2]
g
o 204
S
=
odu oA Saline MSC
Fig. 3 Effect of MSCs on the smooth muscle and microvascular density of the vaginal tissue. A Immunohistochemistry of a-SMA for morphology
and quantity of smooth muscle (x200). B Quantitative analysis of a-SMA staining. C Immunofluorescence staining of von Willebrand factor (vWF)
for evaluating microvascular density (x200). D Quantification of microvascular density. The number of microvessels per high power field (hpf)
under a light microscope. Data were presented as the mean + standard deviation. n=5 animals/group. *p < 0.05, **p < 0.01.

POP [22, 23]. The lamina propria and muscularis are the
two important layers that maintain the supportive func-
tions of the vaginal wall. The clinical manifestation of
POP may occur due to the dysregulation of ECM metab-
olism [24]. Collagen and elastin are fundamental compo-
nents of the ECM that provide support for the pelvic
floor [25]. Previous studies have found reduced collagen
I expression and a reduced collagen I/III ratio as well as
increased of III expression in vaginal tissue in POP [26,
27]. The strong association between POP and changes in

considered in the design of therapeutic strategies for
POP. In our study, the MSC group exhibited a signifi-
cant increase in collagen I expression and the ratio of
collagen I/III compared with the saline group. Our re-
sults indicate gradual new tissue growth promoted by
the MSC treatment in contrast to the continual decrease
in collagen after menopause. Elastin is also an important
component of the vaginal wall, and fibulin-5 plays a vital
role in elastin formation by guiding the assembly of elas-
tic fibers [28]. Previous studies have shown abnormal

collagen suggests that collagen should be seriously elastic fiber formation and spontaneous POP
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development after parturition in fibulin-5 knockout mice
[29, 30]. In our study, the content of elastin and fibulin-
5 was significantly increased in rhesus macaques treated
with MSCs at 12 weeks after injection. Similarly, Lin
et al. reported that a significantly higher elastin content
in the MSC group than in the control group in the treat-
ment of SUI [31], suggesting that MSCs might promote
elastin production.

The vaginal ECM is under constant remodeling, and
the balance between MMP and TIMP expression is crit-
ical for ECM homeostasis. Previous studies have shown
an association between increased MMP/decreased TIMP
expression and the occurrence of POP [32, 33]. Add-
itionally, MSCs have been shown to secrete ECM-
mediating factors, including MMPs and TIMPs [34]. We
assessed the expression of MMP1, MMP2, MMP9, and
MMP13, which can specifically cleave collagen I, colla-
gen III, and elastin [35], and the expression of their in-
hibitors, TIMP1 and TIMP2. In our study, the mRNA
expression levels of MMP2, MMP9, and MMP13 were
significantly decreased in the MSC group compared with
the saline group. However, statistical analysis revealed
no significant difference in the expression of MMPI,
TIMP1, or TIMP2 between the two groups. We infer
that the downregulation of MMP expression in the MSC
group may play a role in increasing the collagen and
elastin content by reducing degradation.

A higher microvascular density in the lamina propria
layer of the vaginal tissue in the MSC group was

expected, since MSCs are known to secrete angiogenic
factors, such as VEGF [36, 37]. VEGF is a classic growth
factor that induces neovascularization by promoting the
migration and proliferation of microvascular endothelial
cells. In our study, histological analysis showed increased
microvascular density in the MSC group. In addition,
the mRNA expression of VEGF was significantly in-
creased in the MSC group compared with the saline
group. In line with our research results, others have also
demonstrated that MSCs promote neovascularization by
secreting VEGF [38-40]. Neovascularization is also an
important aspect of healthy tissue regeneration that
merits adequate attention in the design of POP treat-
ment methods.

Previous studies have shown that alterations in smooth
muscle morphology and function in the vaginal tissue
may participate in the pathogenesis of POP [41]. The
fractional area of nonvascular vaginal smooth muscle in
the muscularis of women with POP was significantly de-
creased compared with that of women without POP [42,
43], suggesting that the increase in vaginal smooth
muscle may be of critical importance for POP treatment.
Our results demonstrated that MSCs promoted the for-
mation of the smooth muscle. Consistent with our re-
sults, MSC therapies have been shown to increase the
content of smooth muscle in the treatment of SUI in a
rat model [44, 45]. MSCs have the potential to differenti-
ate into functional smooth muscle cells [46]. However,
De Coppi et al. reported that MSCs mainly regulated
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smooth muscle via a paracrine mechanism and that their
effect via direct differentiation was limited [47]. Further
research is still needed to determine whether the in-
creased smooth muscle in our study was derived from
the differentiation of MSCs or their secretion of factors
to promote autologous tissue regeneration.

POP can change the biomechanical properties of the
vaginal wall. Epstein et al. reported that the vaginal wall
of women with POP was significantly more extensible
than that of women without POP and that increased va-
ginal extensibility was associated with increased POP se-
verity [11]. These findings appear to be in agreement
with those of previous histological studies of vaginal tis-
sue showing less collagen I and more collagen III in
women with than without POP, as collagen I provides
tensile strength and stiffness and collagen III affects tis-
sue extensibility and elasticity [48]. Our results showed
that the elastic modulus was significantly higher in the
MSC group, indicating that the vaginal tissue injected
with MSCs was stiffer than that not injected with MSCs.
In agreement with our findings, Zou et al. reported that
MSCs promoted the elastic modulus in the treatment of
SUI in a rat model [49]. The changes in biomechanical
properties following MSC injection in our study can be
explained by changes in ECM deposition and smooth
muscle regeneration.

There are some limitations to our study. A key limita-
tion is the POP animal model. The changes in vaginal
tissue in ovariectomized animals may not entirely reflect
the changes in the vaginal tissue caused by POP. How-
ever, there is currently no effective method to establish a
POP animal model. Lacks of cell fate tracking after MSC
transplantation and the functional mechanism of MSC
therapy are also important limitations of this study,
which will be conducted in our future study. The small
sample size is another limitation of the present study.
To our knowledge, this is the first study to evaluate stem
cell therapy for the repair of the weak vaginal tissue in
rhesus macaques after bilateral ovariectomy without a
traditional mesh, and treatment with MSCs showed a
positive effect on vaginal tissue repair. This study dem-
onstrates a new potential therapeutic approach for POP
and provides a basis for preclinical research on the clin-
ical application of stem cell therapies.

Conclusion

In conclusion, the vaginal transplantation of MSCs could
repair the weak vaginal tissue in bilateral ovariectomized
rhesus macaques by promoting ECM ingrowth, neovas-
cularization, and smooth muscle formation and improve
the biomechanical properties of the vagina by enhancing
the elastic modulus. The potential of MSCs in the repair
of the weak vaginal tissue offers a new prospective treat-
ment for POP.
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